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ABSTRACT.—Climate and landscape change are expected to affect species’ distributions and interactions, with
potentially harmful consequences for specialist predators. Availability of optimal prey can affect reproductive
success in raptors, especially in the Arctic, where dramatic differences in prey availability occur both within and
between years. However, behavioral responses of dietary specialist, resident predators such as Gyrfalcons (Falco
rusticolus) to changes in prey availability remain poorly understood. To improve understanding of how climate-
driven changes in prey availability may affect diet of avian predators in the Arctic, we characterized Gyrfalcon diet
on the Seward Peninsula, Alaska, in 2014 and 2015 from images representing 2008 prey items obtained by
motion-activated cameras at 20 nests. We documented two important dietary shifts: the proportion of ptarmigan
(Willow Ptarmigan [Lagopus lagopus] and Rock Ptarmigan [L. muta]) in the diet declined throughout the brood-
rearing period in both years, and also differed between years. In both cases, ptarmigan were replaced by Arctic
ground squirrels (Urocitellus parryii) in the diet. Despite shifts in prey composition, dietary breadth did not
change, which revealed a facultative shift in prey use in which Gyrfalcons relied on prey of large size rather than
prey of a particular taxon. We describe previously undocumented prey-use patterns during Gyrfalcon breeding,
specifically an interchange between two prey species that are keystones in tundra ecology. These results are
important for informing predictive models of climate change and adaptive species management plans. Further
study of the interchange between prey types described in this study can strengthen insight into key ecosystem
processes, and the cause and effect of potential decoupling of predator-prey interactions.

KEY WORDS: Gyrfalcon; Falco rusticolus; Lagopus spp.; Alaska; Arctic ground squirrel; climate change; diet;
ptarmigan.

PLASTICIDAD EN LA DIETA DE UN DEPREDADOR ESPECIALISTA, FALCO RUSTICOLUS: NUEVAS
PERSPECTIVAS SOBRE SU ALIMENTACIÓN DURANTE LA CRÍA DE LA NIDADA

RESUMEN.—Es de esperar que tanto el clima como los cambios en el paisaje afecten las distribuciones y las
interacciones de las especies, a veces con consecuencias potencialmente perjudiciales, sobre todo para los
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depredadores especialistas. La disponibilidad de presas óptimas puede afectar el éxito reproductivo de las
rapaces, especialmente en el Ártico, donde se registran diferencias dramáticas en la disponibilidad de presas
a lo largo del año y entre años. Sin embargo, es muy poco lo que sabemos sobre las respuestas
comportamentales de los depredadores residentes con dietas especializadas, como Falco rusticolus, frente a
los cambios en disponibilidad de presas. Para entender mejor cómo los cambios en la disponibilidad de
presas resultante de modificaciones climáticas afectan la dieta de los depredadores de aves en el Ártico,
investigamos la dieta de F. rusticolus en la Penı́nsula Seward, Alaska, en 2014 y 2015 a partir de 2008 presas
identificadas en 20 nidos y por medio de imágenes obtenidas usando cámaras activadas por movimiento.
Registramos dos cambios importantes en la dieta de esta especie: 1) la proporción de lagópodos (Lagopus
lagopus y L. muta) en la dieta disminuyó a lo largo del perı́odo de crı́a de la nidada en ambos años y 2)
también varió entre años. En ambos casos, los lagópodos fueron reemplazados por ardillas terrestres del
Ártico (Urocitellus parryii). A pesar de los cambios en la composición de la dieta, su amplitud no varió, lo que
reveló un cambio discrecional en el uso de presas en el cual F. rusticolus se apoyó en presas de gran tamaño
más que en presas pertenecientes a un taxón especı́fico. Describimos patrones de consumo de presas
previamente no registrados durante el perı́odo de crı́a de F. rusticolus, especı́ficamente un intercambio entre
dos especies de presas que son clave en la ecologı́a de la tundra. Estos resultados son importantes para
desarrollar modelos predictivos de cambio climático y planes de manejo adaptativos de especies. El estudio
adicional del intercambio entre tipos de presas descripto en este trabajo puede fortalecer el entendimiento
de los procesos claves del ecosistema, y la causa y efecto del desacoplamiento potencial de las interacciones
depredador-presa.

[Traducción del equipo editorial]

Climate-induced changes in the Arctic are affect-
ing ecosystem function (Post et al. 2009, Kortsch et
al. 2015, Frainer et al. 2017) and disrupting life
history strategies and important species interactions
(Ims and Fuglei 2005, Hunter et al. 2010, Smith et al.
2010). Disruption to life histories of key ecosystem
members, such as apex predators, may have impor-
tant implications for their status in tundra ecology
because population stability of predators often
depends on population trends of prey species (Krebs
et al. 2001, Sinclair and Krebs 2002, Barraquand et
al. 2014). Under predicted climate-change scenarios
in the Arctic, population trends of many species will
become less cyclic and pronounced (Gilg et al.
2009), which may disrupt predator-prey interactions
and decouple ecosystem dynamics (Bretagnolle and
Gillis 2010, Mossop 2011, Schmidt et al. 2012).

The effects of climate-induced changes may be
particularly pronounced for specialist species (Hay-
how et al. 2015, Kellermann and van Riper 2015).
The Gyrfalcon (Falco rusticolus) is considered a true
specialist in terms of both habitat and diet. A year-
round resident of Arctic tundra in much of its range,
the Gyrfalcon is a dietary specialist that relies heavily
on ptarmigan (Lagopus spp.; Cade 1960, Nielsen and
Cade 1990, 2017, Huhtala et al. 1996, Nielsen 1999,
2003, Nyström et al. 2005), although exceptions to
these generalizations are known (Burnham and
Burnham 2011). Because of the Gyrfalcon’s special-
ized diet, predicted climate-change effects in the
Arctic, including increases in shrub cover (Zhang et

al. 2013) and the resulting impacts on ptarmigan
distribution (Virkkala et al. 2008, Lehikoinen et al.
2014), may potentially influence Gyrfalcon popula-
tions. Although behavioral responses of avian
predators to boom-and-bust prey cycles have been
studied in the Arctic (Gilg et al. 2009, Schmidt et al.
2012, Barraquand et al. 2014, Pokrovsky et al. 2014),
the behavioral responses to changes in prey avail-
ability of dietary specialist, resident predators such as
the Gyrfalcon remain poorly understood. A better
understanding of Gyrfalcons’ ability to modify prey
use in response to changing prey availability is
necessary to model the effects of predicted climate
change on this species and on ecosystem function in
Arctic tundra.

To provide important information to further
understand the role of Gyrfalcons in tundra ecosys-
tems, better predict climate change effects on
Gyrfalcon populations, and further determine Gyr-
falcon dependence on ptarmigan, we conducted the
first large-scale, camera-based study of Gyrfalcon diet
aimed to analyze trends in prey use during two
breeding seasons in western Alaska. We focused on
the brood-rearing period to capture peak resource
requirements to understand the importance of prey
types during this period (Collopy 1984, Holthuijzen
1990) and to detect potential changes in prey use.
We designed our study to test whether patterns in
prey use reflect (1) ecosystem phenology (i.e.,
changes in prey availability over time) and correlate
with calendar date (hereafter referred to as the
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Ecosystem Phenology Hypothesis [EPH]), or (2) the
developmental and energetic needs of growing
nestlings, which correlate with nestling age (hereaf-
ter referred to as the Developmental Phenology
Hypothesis [DPH] or Nestling Age Hypothesis). The
distinction between these two hypotheses is impor-
tant in the context of climate change because dietary
habits associated with nestling development may be
less plastic, whereas dietary habits that follow system
phenology may be adaptable to changing prey
landscapes. We hypothesized that patterns in prey
use are best explained by the EPH. Specifically, we
predicted three patterns associated with phenology
during brood-rearing. First, we predicted a decrease
in ptarmigan in Gyrfalcon diet because changes in
ptarmigan behavior and appearance at the onset of
their nesting period reduce their availability as prey
(Hannon et al. 1998). Second, we predicted a
decrease in the use of large prey items in Gyrfalcon
diet as use of ptarmigan declined, and as alternative,
migratory prey species of smaller body mass become
more available. Third, we predicted that an increase
in Gyrfalcon diet breadth would occur during the
brood-rearing period as ptarmigan use decreased
and use of alternative prey increased.

METHODS

Study Area. The study area covered 14,150 km2 of
the Seward Peninsula, described by Bente (2011).
Topography consisted of rolling hills interspersed
with mountainous terrain, numerous rock outcrop-
pings, and cliff-lined river systems. The vegetation
was predominantly Arctic tundra dominated by low-
lying vegetation in coastal and highland areas, and
dense willow (Salix spp.) and alder (Alnus spp.)
thickets along riparian corridors. The study area
provided abundant nesting habitat for Gyrfalcons,
with an annual mean of 35 (range 31–39) occupied
nesting territories (Bente 2011).

Nest Treatment. To locate nesting Gyrfalcons, we
conducted occupancy surveys in 2014 and 2015
using a Robinson R-44 helicopter (Robinson Heli-
copter Company, Torrence, CA, USA). We consid-
ered a nest occupied if it contained eggs, young, an
incubating bird, or a mated pair on or near the nest
(following Franke et al. 2017). After we determined
Gyrfalcon occupancy, we installed Reconyx PC800
(Reconyx Inc., Holmen, WI, USA) motion-activated
cameras (hereafter referred to as ‘‘nest camera’’) at
23 (10 in 2014, 13 in 2015) occupied Gyrfalcon nests
to record prey deliveries during the brood-rearing
period. Of these nests, five received cameras in both

2014 and 2015. Installation of cameras and methods
for data collection followed those described in
Robinson and Prostor (2017). We prioritized camera
installation in nests with eggs; however, in some
cases we installed cameras after hatch for nests
discovered with nestlings during occupancy surveys.

Data Analysis. We catalogued prey items from nest
camera images and classified items to the lowest
taxonomic level possible. To avoid double-counting,
we counted whole or headless prey as one item and
noted individual parts delivered during a 24-hr
period, because they may represent a single prey
item. We also noted the condition of any prey
removed by adults because Gyrfalcons are known to
cache prey (Booms and Fuller 2003). We assigned
average mass values to identified mammals (Kays
and Wilson 2009) and birds (Sibley 2014) for
biomass calculations. We assigned biomass for young
or partially grown prey by visually estimating their
size as a proportion of adult size, and applying the
proportion to the average biomass value of the
species. Due to variation in Arctic ground squirrel
(Urocitellus parryii) mass across its distribution, we
calculated an average mass for Alaska squirrels from
Sheriff et al. (2013). We estimated mass values for
unknown items by comparing them visually to the
size of a known item (e.g., an avian prey item
approximately the size of a Lapland Longspur
[Calcarius lapponicus] received a mass assignment of
27 g) following Booms and Fuller (2003).

To assess the completeness of diet sampling, we
constructed a rarefaction curve using EstimateS
software (Colwell 2013) and adopted the 100
sample-order randomization. Rarefaction curves
represent the cumulative means of resampling the
pooled individuals to produce the statistical expec-
tation of adding additional individuals (Gotelli and
Colwell 2001). Thus, the point at which the curve
begins to approach an asymptote represents the
number of samples (individual prey items for this
study) required to capture all species in the
Gyrfalcon diet for our study area, and indicates that
sampling is sufficient for further statistical inference
(Anderson 2009, Wirta et al. 2015, Robinson 2017).

To evaluate the important drivers for influencing
changes in prey use we organized prey items in two
ways: biomass categories (prey size) and prey-type
categories. Biomass categories were based on the
biomass range catalogued in the diet: small (,200
g), medium (201–400 g), and large (.400 g). Prey
types were organized into seven ecologically mean-
ingful prey categories following Robinson et al.
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(2015): ptarmigan (Willow Ptarmigan [Lagopus
lagopus] and Rock Ptarmigan [L. muta]), shorebird,
passerine, jaeger (Stercorarius spp.), squirrel (Arctic
ground squirrel [Urocitellus parryii]), microtine, and
other (raptor [Accipitriformes and Strigiformes],
waterfowl [Anseriformes], and seabird [Alcidae]).
We lumped raptor, waterfowl, and seabird because
these items constituted very small contributions by
number to the overall diet. We placed items we
could not identify to these groups in one of two
categories: unknown bird or unknown.

To test our predictions from the Ecosystem
Phenology and Developmental Phenology Hy-
potheses, we organized proportion of total bio-
mass of prey size and type categories by ordinal
date as a measure of phenology, and nestling age
as a measure of nestling development into 5-d
periods (hereafter referred to as ‘‘5-d period’’ and
‘‘age,’’ respectively). For both ‘‘5-d period’’ and
‘‘age’’ we plotted percent contribution by prey
type and biomass category in a vertical bar chart
to illustrate the change in prey use across time.
We calculated diet breadth using the standard-
ized version of Levin’s Index of Diet Breadth
(Hurlbert 1978). We calculated diet breadth for
each nest using the seven ecologically relevant
prey categories by ‘‘5-d period’’ and ‘‘age’’ to
illustrate the change in prey use across these two
temporal scales.

Statistical Analysis. We created generalized linear
mixed models (GLMMs) using the package lme4 in
the statistical platform R 3.2.3 (Bates et al. 2015, R
Core Team 2015) with a binomial distribution and
log link to test the EPH and DPH. All models
included nest as a random intercept to control for
the expected variation between nests, and year as a
fixed effect to control for differences between years.
We included ‘‘5-d period’’ and ‘‘age’’ as predictors of
whether an individual prey was of size class large, and
whether a prey item was a ptarmigan. We created
linear mixed models (LMMs) using the package
lme4 with log link and nest as a random variable to
control for the expected variation between nests,
year as a fixed effect to control for differences
between years, and ‘‘5-d period’’ and ‘‘age’’ as
predictors of diet breadth. We used an informa-
tion-theoretic approach to evaluate models and to
test parameter support against the intercept-only
model (Burnham et al. 2011). We ranked and
compared models using Akaike’s Information Crite-
rion (AIC, Akaike 1974) and considered there to be
evidence for a single best model if there were no

other models with DAIC , 2 of the best model
(Burnham and Anderson 2002). We reported 85%
confidence intervals for parameter estimates (Ar-
nold 2010) and considered a variable to be
influential when it was included in a competitive
model and its 85% confidence interval did not
contain zero. We note that inference from this study
would be no different had we used more traditional
95% confidence intervals. We carried out all analyses
in the statistical platform R 3.2.3 (R Core Team
2015).

RESULTS

Overall Diet Composition. We placed cameras in
23 nests, but due to camera failure and nest failure
prior to hatch, cameras did not capture prey
deliveries at three nests; therefore, we quantified
diet at 20 nests. We documented 2008 prey items
(Table 1), of 40 species and 15 families over two
breeding seasons. Of the recorded prey items, we
identified 99% to categories used for analysis (i.e.,
1% were placed in the category ‘‘unknown’’). Mean
total biomass per nest was 40.4 kg. After 1000 prey
detections, the rate at which species were added to
the total number of recorded species decreased to
three species per 200 prey items (Fig. 1). Approxi-
mately one additional species was added to the total
detected in the diet after 1600 prey detections,
indicating that additional sampling would have little
effect on the overall diet description. Thus, sampling
effort was adequate for a full characterization of
species composition in the Gyrfalcon diet during
brood-rearing.

Ptarmigan represented 52% of overall prey bio-
mass, followed by squirrel (36%), and shorebird
(Table 1). However, diet composition differed
between years, with ptarmigan exceeding 75% of
the diet in 2014, and squirrel exceeding 50% of the
diet in 2015 (Fig. 2).

Temporal Change in Prey Use. Of three models
that compared temporal effects on the proportion of
ptarmigan in the diet, the top model contained the
predictor ‘‘5-d period,’’ the fixed effect ‘‘year,’’ and
the random intercept ‘‘nest’’ (Table 2). All other
models had DAIC .2 (Age DAIC ¼ 6.66; Table 2)
from the top model, and thus we considered them to
be uninformative. The variable ‘‘5-d period’’ was
associated with the proportion of ptarmigan in the
overall diet, because the proportion of ptarmigan
decreased by ‘‘5-d period’’ (b ¼ –0.14, CI ¼ –0.17,
–0.11); Fig. 3). The proportion of ptarmigan in the
diet decreased by ‘‘5-d period’’ as the season
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advanced during both years, corresponding with an
increase in the contribution of squirrel (Fig. 4). In
2014, this decrease was less substantial and ptarmi-
gan remained the most common prey type through-
out the brood-rearing period, but in 2015 this

Table 1. Summary of prey types (40 total species) catalogued from motion-activated cameras installed at 20 Gyrfalcon
nests during the brood-rearing period in 2014 and 2015 on the Seward Peninsula, Alaska. Information regarding species
identified and items identified to lowest taxonomic level possible are given by number of items, total biomass estimated,
and percent of total biomass estimated. Species are listed in order of total biomass contribution observed in all years.
Biomass assignment varies, and is estimated on a per-prey-item basis.

2014 2015 ALL YEARS

PREY CATEGORY n
TOTAL

BIOMASS (g) % BIOMASS n
TOTAL

BIOMASS (g) % BIOMASS n
TOTAL

BIOMASS (g) % BIOMASS

Birds
Ptarmigan 520 250,975 75.6 367 170,115 35.7 887 421,090 52.1
Jaeger 4 929 0.3 38 11,400 2.4 42 12,329 1.5
Shorebird 99 19,101 5.8 154 29,175 6.1 253 48,276 6.0
Passerine 55 1788 0.6 169 10,624 2.2 224 12,412 1.5
Waterfowl 1 800 0.2 3 1885 0.4 4 2685 0.3
Raptor 0 0 0.0 1 420 0.1 1 420 0.1
Seabird 0 0 0.0 1 285 0.1 1 285 0.0
Unknown bird 50 6994.5 2.1 48 4208 0.9 98 11,202.5 1.4

Subtotal birds 729 280,587.5 84.6 781 228,112 47.9 1510 508,699.5 62.9
Mammals

Squirrel 69 49,197 14.8 343 243,488 51.1 412 292,685 36.2
Microtine 1 80 0.0 53 3107 0.7 54 3187 0.4

Subtotal mammals 70 49,277 14.9 396 246,595 51.7 466 295,872 36.6
Unknown 17 1947 0.6 15 1866.5 0.4 32 3813.5 0.5
Total 816 331,811.5 1191 476,573.5 2008 808,385

Figure 1. Rarefaction curve illustrating the effect of each
additional prey species to the overall species total in the
Gyrfalcon diet on the Seward Peninsula, Alaska. In the
range from 1600 to 1800 detections, approximately one
additional species was detected in the overall diet, meaning
that sampling was sufficient for the purpose of the current
study.

Figure 2. Proportion of biomass contribution of prey
items to Gyrfalcon diet during brood rearing on the Seward
Peninsula, western Alaska, in 2014 (n¼10 nests) and 2015
(n¼10 nests). In 2014, ptarmigan constituted the majority
of the diet, with ground squirrels and shorebirds as other
primary contributors to total biomass. In 2015, ground
squirrels constituted the majority of the diet, with
ptarmigan, shorebirds, jaegers, and passerines as other
main contributors to total biomass.
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decrease resulted in a mid-season switch to squirrel
as the most common prey type (Figs. 2, 4).

The top model of temporal effects on the
proportion of size class ‘‘large’’ in the diet contained
the predictor ‘‘5-d period’’ and the random inter-
cept ‘‘nest’’ (Table 2). All other models were DAIC .

2 (Age DAIC ¼ 5.35; Table 2) from the top model,
and thus we considered them to be uninformative.
The variable ‘‘5-d period’’ was also associated with
the proportion of the size class ‘‘large,’’ such that the
proportion of large prey decreased by 5-d period as
the season advanced (b ¼ –0.06, CI ¼ –0.09, –0.03;

Fig. 3). The proportion of size class ‘‘large’’ to the
diet decreased slightly by 5-d period, but throughout
the season size class ‘‘large’’ remained as the most
common size class (Fig. 3).

The top models of temporal effects on diet
breadth with ‘‘5-d period’’ and ‘‘age’’ as predictors
were the null models, which contained only the
fixed effect of ‘‘year’’ and the random intercept
‘‘nest’’ (Table 3). However, in both instances, the
model including ‘‘5-d period’’ or ‘‘age,’’ respectively,
received weak support, suggesting a weak association
between diet breadth and time.

Table 2. AIC (Akaike’s Information Criterion) model selection criteria for models of Gyrfalcon diet that explore the role
of ‘‘5-d period’’ (Ecosystem Phenology Hypothesis) and ‘‘age’’ (Nestling Age Hypothesis/Developmental Phenology
Hypothesis) in Gyrfalcon diet by the proportion of ptarmigan and the proportion of size class large in the diet during the
2014 and 2015 breeding seasons in western Alaska. The variable ‘‘5-d period’’ showed the strongest association with the
proportion of ptarmigan (AIC weight ¼ 0.97), and the proportion of size class large (AIC weight ¼ 0.89) in the diet,
supporting the Ecosystem Phenology Hypothesis.

MODEL AND VARIABLES K DAICa AIC WEIGHT
b CUMULATIVE WEIGHT

c DEVIANCE

Proportion of Ptarmigan
5-d period 4 0.00 0.97 0.97 2311
Age 4 6.66 0.03 1.00 2318
Intercept only 3 34.60 0.00 1.00 2348

Size class ‘‘large’’
5-d period 4 0.00 0.89 0.89 2467
Age 4 5.35 0.06 0.96 2472
Intercept only 3 6.01 0.04 1.00 2475

a DAIC¼ a measure of each model relative to the top model.
b AIC weight¼ the ‘‘weight of evidence’’ in favor of a given model being the best approximating model in the set.
c Cumulative weight¼ the cumulative sum of the AIC weight scores including each preceding model.

Figure 3. Top Generalized Linear Mixed Models (GLMM) from AIC model selection that support the Ecosystem
Phenology Hypothesis, and best explained the effects of system phenology on Gyrfalcon diet by (A) the proportion of
ptarmigan and (B) the proportion of the size class ‘‘large’’ as prey types in the diet during the 2014 and 2015 breeding
seasons in western Alaska. Grey shading indicates the 85% confidence interval. The variable ‘‘5-d period’’ was negatively
associated with both the probability of ptarmigan as a prey item (b¼�0.14, 85% CI¼�0.17,�0.11) and the probability of
prey items of the size class ‘‘large’’ (b¼�0.06, 85% CI¼ –0.09,�0.03).
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Figure 4. Change in the proportion of prey items in the Gyrfalcon diet by 5-d period over the course of two breeding
seasons on the Seward Peninsula, Alaska: 2014 (top), 2015 (middle), and both years (bottom) as determined by prey items
catalogued using nest cameras in 20 nests (10 in 2014, 10 in 2015). Proportion of ptarmigan decreased by 5-d period in
both 2014 and 2015.

Table 3. AIC model selection criteria for models of Gyrfalcon diet that explore the role of ecosystem phenology (‘‘5-d
period’’) and the role of nestling age in diet breadth of Gyrfalcons during the brood-rearing period during the 2014 and
2015 breeding seasons in western Alaska. In both cases, the intercept-only model was the best-supported model, indicating
that neither 5-d period nor age were associated with diet breadth.

MODEL AND VARIABLES K DAICa AIC WEIGHT
b CUMULATIVE WEIGHT

c DEVIANCE

Ecosystem phenology
Intercept only 4 0.00 0.71 0.71 23.6
5-d period 5 1.79 0.29 1.00 23.8

Nestling age
Intercept only 4 0.00 0.66 0.66 �379.6
Age 5 1.30 0.34 1.00 �380.3

a DAIC¼ a measure of each model relative to the top model.
b AIC weight¼ the ‘‘weight of evidence’’ in favor of a given model being the best approximating model in the set.
c Cumulative weight¼ the cumulative sum of the AIC weight scores including each preceding model.
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DISCUSSION

We found that changes in use of ptarmigan and
large prey types over time were best explained by the
Ecosystem Phenology Hypothesis. Our results indi-
cated that changes in prey use were related to
calendar date (ecosystem phenology) and not
nestling age (developmental phenology). Although
the models supported a decrease in the use of both
ptarmigan and large prey types over time, large items
remained the most used prey type throughout the
brood-rearing period, whereas ptarmigan did not.
Consequently, diet breadth remained unchanged, in
contrast to our prediction that diet breadth would
increase over time. We further observed two
important trends in prey use: (1) a mid-season shift
in dominant prey type from ptarmigan to squirrel

occurred in both years, and (2) a switch in dominant
prey type occurred between years from ptarmigan in
2014 to squirrel in 2015.

In contrast to their established recognition as
ptarmigan specialists, Gyrfalcons in our study were
facultative specialists on large prey types (e.g., prey
.400 g) during the brood-rearing period. The
observation that Gyrfalcons switched predominant
prey type within and between years suggests that
Gyrfalcon prey-use patterns depend on seasonal and
annual availability of optimal prey types. Previous
studies that have investigated inter-seasonal shifts in
nestling diet have demonstrated the influence of the
division in parental roles, in which dietary changes
in prey size and type were explained not by prey
availability, but by shifts in parental roles associated

Figure 5. Change in the proportion of Gyrfalcon prey items in each biomass category by 5-d periods across the brood-
rearing period on the Seward Peninsula, Alaska: 2014 (top), 2015 (middle,) and both years (bottom). Generally, the same
patterns appear between years: a shift to a larger prey type (ground squirrel) as the season advanced, but with a less
substantial shift in 2014 when ptarmigan were the most common prey type in the diet.
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with a decrease in nestling dependency (Steen et al.
2010, Sonerud et al. 2014a, 2014b). Although the
trends in our data may have been influenced by a
division in parental roles, our results indicate that
changes in dietary habits are better explained by
ecosystem phenology than by nestling age. Because a
facultative specialist selects prey based on availability
(Glasser 1982), the inclusion of an optimal prey type
in the diet depends on its availability, and that of
other optimal prey. As the availability of prey types
changes, the optimal diet could switch from special-
ization on one food type to another with or without
increases in diet breadth (Pyke 1984), as we observed
in this study. Therefore, the seasonal and annual
shifts from ptarmigan to squirrel that we observed
likely reflect changes in prey availability, which may
be a function of either absolute prey abundance or
variation in prey susceptibility to predation. For
ptarmigan, vulnerability to predation varies by sex
and age over the course of the summer (Nielsen and
Cade 1990, 2017, Nielsen 1999). During courtship,
male ptarmigan perform conspicuous displays, and
they retain their white winter plumage against a
landscape that is largely brown in color, thus
rendering them susceptible to predation. As nesting
begins, adult ptarmigan molt into their cryptic
summer plumage, breeding displays and courtship
behaviors decrease, and both male and female
ptarmigan become less conspicuous (Hannon et al.
1998). Additionally, such shifts in prey availability
may include seasonal and interannual differences in
squirrel abundance (Carl 1971, Green 1977, Batzli
and Sobaski 1980) that influence their role in
Gyrfalcon diet (Poole and Boag 1988). Because we
did not conduct concurrent prey surveys with our
dietary observations, we were unable to assess the
relative effects of changes in prey behavior or
abundance on their incidence in the diet. We
therefore encourage future researchers to couple
analyses of temporal dietary trends in nesting
Gyrfalcon with temporal prey trends in the sur-
rounding area to further understand Gyrfalcon prey
use and its connection to fluctuations in prey
populations.

Because Gyrfalcon prey use in this study consisted
predominately of shifts between two prey types, shifts
in prey use may signal the ramifications of trophic
cascades in Arctic tundra and should be considered
in climate-change scenarios for this ecosystem. For
instance, the contribution of squirrel as an alterna-
tive prey type may stabilize Gyrfalcon populations in
western Alaska during lows in ptarmigan population

cycles. Populations of specialist predators often
fluctuate with populations of preferred prey species,
whereas generalist predators are more numerically
stable because they are capable of switching prey
type in response to fluctuations in prey abundance
(Korpimäki 1985, Korpimäki and Norrdahl 1989,
Redpath and Thirgood 1999, Redpath et al. 2001).
In Iceland, Gyrfalcons undergo regular fluctuations
in reproductive rate following the population cycles
of Rock Ptarmigan (Nielsen 2011). In western
Canada, a collapse in Willow Ptarmigan population
cycles is thought to be responsible for a decline in
numbers of breeding Gyrfalcons (Mossop 2011). On
the Seward Peninsula, Gyrfalcon breeding numbers
have fluctuated little over time (Bente 2011).
Additionally, in other parts of Alaska, the number
of occupied territories has also remained relatively
stable over time with no obvious regular or cyclic
pattern (Mindell et al. 1987, Mindell and White
1988). The lack of appreciable population cycles of
Gyrfalcons in western Alaska supports the premise
that Arctic ground squirrels maintain predator
population stability (Korpimäki et al. 1990, Kurki
et al. 1997).

Our study illustrates an important relationship
involving three keystone members of Arctic ecosys-
tems—two ecosystem engineers (Tape et al. 2010,
Christie et al. 2011, Wheeler and Hik 2012) that are
members of the prey guild, and one apex predator.
This relationship presents an opportunity for study-
ing the effects of climate change on ecosystem
functioning in Arctic tundra (Watson et al. 2011,
Wheeler and Hik 2012). For instance, under some
climate change scenarios ptarmigan may become
functionally less available to Gyrfalcon through two
mechanisms: (1) increases in the height, density,
and distribution of shrub cover could increase the
number of refugia from predation; and (2) range
shifts or reductions could alter the distribution of
ptarmigan within the range of the Gyrfalcon
(Virkkala et al. 2008, Mossop 2011, Lehikoinen et
al. 2014). Climate change is also predicted to impact
the distribution of Arctic ground squirrels through a
multitude of factors related to its habitat associations
(Barker and Derocher 2010, Wheeler and Hik 2012),
where effects may be negative (e.g., increases in
shrub cover) or positive (e.g., increases in forbs;
Wheeler et al. 2015). Thus, although our results
provide important information on the phenology
and role of each important prey type in Gyrfalcon
breeding ecology, the effects of climate change on
the relationship between these three important
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ecosystem members remain uncertain. This uncer-
tainty underscores the importance of continued
research on this aspect of Gyrfalcon life history to
expand understanding of the effects of global
change on key interactions in tundra ecology.
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Korpimäki, E., K. Huhtala, and S. Sulkava (1990). Does the
year-to-year variation in the diet of Eagle and Ural Owls
support the Alternative Prey Hypothesis? Oikos 58:47–
54.
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