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INTRODUCTION

Global climate change is an ongoing pervasive global
conservation concern, with significant negative impacts for
many species and populations. This Conservation Letter
provides a scientific review of the effects of global climate
change on raptors and concludes by highlighting potential
mitigations and research needs. This letter is not intended
as an exhaustive literature review. Rather, the intent of the
Raptor Research Foundation (RRF) is to provide readers
with enough evidence-based examples that they can
appreciate the scope and prevalence of climate change
impacts, understand their effects on raptor species and
populations, and recognize some of the challenges
associated with addressing climate change’s effects on
raptors across regions.

Climate change is caused by the release of atmospheric
greenhouse gases (primarily carbon dioxide) resulting in
changes in global climate-related parameters, mainly
temperature and precipitation. In this scenario, the trend
of increasing global temperatures is predicted to continue
(Intergovernmental Panel on Climate Change [IPCC]
2021), influencing other climatic parameters and events.
Increasing temperatures can impact raptors directly (e.g.,

Jaffré et al 2013, Dykstra et al. 2021b) and indirectly by
driving disruptions to water cycles ranging from more
frequent heavy precipitation events (Trenberth et al. 2003,
Min et al. 2011, Anctil et al. 2014) to more severe drought
(Cook et al. 2018, Smith et al. 2020). Further, the nature of
climate events is also changing, encompassing more severe
hurricanes and tropical cyclones (Emanuel 2005, 2013,
Holland and Bruyère 2014), a poleward expansion of
tropical cyclones (Studholme et al. 2022), and shifts in
precipitation temporal trends (Dunning et al. 2018),
exposing raptors to stochastic events. Climatic changes
also alter the distributions of primary producers (Sturm et
al. 2001, Tape et al. 2006) creating bottom-up effects that
alter ecosystem function (i.e., ‘‘regime shifts’’; Rodionov
2004, Ripple et al. 2014). Moreover, the risk of wildlife
extinctions is substantially accelerated by climate change
(Urban 2015), and climate warming is related to the recent
extinctions of at least one raptor (Sergio et al. 2021). This
suggests there may be major negative effects of climate
change for raptors (McClure et al 2018).

Raptors are valuable and important study systems for
investigating the effects of climate change because raptors
are widespread, perform important ecological functions
and can serve as flagship species for biodiversity (Donázar
et al. 2016). As long-lived top predators holding large home
ranges and preying on a wide variety of vertebrates and
invertebrates, raptors are influenced by the effects of
environmental change on lower trophic levels (Meserve et
al. 2003, Schmidt et al. 2018) and can serve as biotic
multipliers of climate change (Urban et al. 2017). Raptors
have been the focus of multiple long-running studies on
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migration (e.g., Sullivan et al. 2016, Therrien et al. 2017)
and breeding rate (e.g., Fasce et al. 2011, Jiménez-Franco et
al. 2020, Maciorowski et al. 2021), which provide valuable
long-term data sets that allow assessment of change (e.g.,
Lee et al. 2020). Additionally, raptors with specialized
habitat or feeding strategies are likely to be disproportion-
ally affected by climate change because of their narrow
ecological niche and lack of plasticity (Gilg et al. 2012, Hof
et al. 2012). Understanding the threats posed by climate
change and identifying priority areas and species is critical
for raptor conservation.

EFFECTS OF CLIMATE CHANGE ON RAPTORS

Climate change affects raptors in various ways, including
changes to distributional ranges, disease and parasite
ecology, breeding phenology, migration, abundance,
population dynamics, communities, and morphology,
physiology, and behavior (Møller 2013, Dunn and Møller
2019). We here provide a brief overview of some of these
effects on raptor species and raptor populations.

Distributional Range. A raptor’s geographic range is
governed largely by the overlap between the spatial
distribution of their thermal niche, preferred prey species,
and appropriate nesting substrate. In response to changing
climate, species could alter their physiological tolerance via
evolutionary processes, but given the rapid pace of climate
change and mobility of raptors, range shifts that track their
thermal niches are likely to predominate (Gilg et al. 2012).
Range shifts are well documented in a variety of taxa (e.g.,
Parmesan et al. 1999, Vors and Boyce 2009, Zuckerberg et
al. 2009, Huang et al. 2017), including raptors (Paprocki et
al. 2014, McCaslin and Heath 2020), and at different time
frames (Parmesan 2006, Tingley et al. 2009, Saupe et al.
2019). The predominant trend for range shift is poleward
and increased elevation, but the direction and magnitude
of range shifts can vary by species, life history, dietary
habits, and habitat, with notable differences between
wintering and breeding ranges (see Migration section
below; Reside et al. 2010, Hovick et al. 2016, Curley et al.
2020), although many raptors display a propensity for
northward shifts (Paprocki et al. 2014, McCaslin and Heath
2020). Tropical raptors are a notable exception to this
trend because their range is predicted to shift multi-
directionally (Sutton et al. 2020, 2022), tracking fluctua-
tions in precipitation (rather than temperature); precipi-
tation being the primary driver of reproductive success in
this region (Pearce-Higgins and Green 2014).

Raptor range shifts are likely to facilitate changes to
ecosystem structure with important consequences for
conservation. Novel assemblages created by shifting ranges
may alter ecosystem functions (top-down regulation of prey
and competition for resources) with consequences that are
difficult to predict because of the many variables and
interactions involved (Gilman et al. 2010). Altered com-
munity dynamics are likely to disproportionally impact

specialist (Hof et al. 2012, Lurgi et al. 2012) and range-
restricted species (particularly polar and mountain-top
species) because of range contractions (e.g., the tundra
biome may contract up to 34% [Boonman et al. 2022]). For
example, Peregrine Falcons (Falco peregrinus) preferentially
select warmer habitats within Nunavut, Canada (Peck et al.
2018) likely due to higher survival and recruitment
(Bruggeman et al. 2015). It is reasonable to expect the
range of Peregrine Falcons to shift northward resulting in
increased competitive pressure on the more specialized
Gyrfalcon (see Population Dynamics section). Defining
current and future raptor ranges is useful to assess the
effectiveness of priority or protected areas (Paprocki et al.
2014, Kassara et al. 2017) and to contextualize population
parameters, as traditional monitoring efforts (within a
stationary study area) are typically unable to differentiate
emigration from population declines (Viverette et al. 1996,
Paprocki et al. 2015). Further, shifts in thermal niches
should be considered within the context of life history and
other critical habitat requirements (e.g., prey and nesting
substrate), because temperature alone is insufficient to
accurately predict range shifts.

Diseases and Parasites. Climatic change is also facilitat-
ing the mostly northward movement of diseases, parasites,
and ectoparasites (McFadzen et al. 1996, Bradley et al.
2005, Hemert et al. 2014), disrupting host-pathogen
dynamics (Merino 2019) and changing local disease
ecology. Greater cross-species viral transmission and
infection of naive populations can result from disease
range expansions and the development of novel assem-
blages (Kafle et al. 2020, Carlson et al. 2022). This can have
drastic implications for naı̈ve populations (e.g., popula-
tions responding to avian malaria [Plasmodium spp.];
Atkinson and Lapointe 2009) because virulence varies
based on a species’ historical exposure to the disease
(Lapointe et al. 2012, Ings and Denk 2022), as examplified
by the Gyrfalcon’s greater sensitiveity to malaria compared
to the Peregrine Falcon (Kingston et al. 1976). Similiarly,
novel ecoparasites (e.g., poultry bugs [Haematosiphon
inodorus]) can elicit significant negative effects on raptors
including decreased nestling body condition and survival
(Dudek et al. 2021), aid in vector-mediated disease
transmission (Leighton et al. 2012), and facilitate indirect
effects of weather changes (Lamarre et al. 2018). Further,
prey can transmit diseases to raptors (Dudek et al. 2018);
thus changes in diet composition can facilitate the
transmission of novel pathogens to predators. Under
environmental change, raptors can switch from primarily
resident prey species to migratory prey (Heath et al. 2021),
which may be problematic because migratory species serve
as important reservoirs for diseases (e.g., avian influenza)
and provide a conduit for disease to travel vast distances to
span seemingly disconnected systems (Seekings et al. 2021,
Tanikawa et al. 2021). Lastly, novel diseases and parasites
can impact lower trophic levels and elicit bottom-up effects
for raptor populations. Changing disease ecology as a result
of climate change is a central conservation concern for
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raptors and likely provides the strongest probability of
direct effects, including increased mortality and rapid
population declines.

Breeding Phenology. Many bird species exhibit earlier
annual breeding dates (advanced phenology) as a result of
climate change, and that shift influences diet and
reproductive rate (Dunn 2019, Dunn and Møller 2019).
Advanced breeding phenology may have positive effects on
reproduction, as early breeders often produce more young
(Franks et al. 2018). Conversely, if a bird species fails to
advance its breeding phenology, there may be a temporal
mismatch between the species’ nestling rearing period and
the peak abundance of its primary prey. The mismatch
could potentially lead to lower survival of young (Dunn
2019) and other demographic and evolutionary changes
(Miller-Rushing et al. 2010, Visser and Gienapp 2019) that
can have important conservation implications.

Species in several groups of raptors are exhibiting
advancing phenology, including falcons (Steenhof and
Peterson 2009, Burnham and Burnham 2011, Carrière and
Matthews 2013, Smith et al. 2017, Taylor et al. 2021, Callery
et al. 2022a), accipiters (Lehikoinen et al. 2010, Rosenfield
et al. 2017), buteos (Lehikoinen et al. 2009, Terraube et al.
2014), and others (Sergio 2003, Moreno-Rueda et al. 2019).
Yet an approximately equal number of studies found no
trend, and a few found delayed breeding, including some
of the same species studied in different locations, and
several species of owls (see compiled table in Dykstra et al.
2021a, Supplementary Material Table S1 for more infor-
mation; also Lehikoinen et al. 2013, Callery et al. 2022a).

Whether a raptor species advances its breeding phenology
may be influenced by dietary preferences and trophic level
(Dunn and Møller 2014, Dunn 2019). Many species with
advancing trends consume primarily birds or insects, whereas
those lacking trends are mostly generalists or mammal-
specialists (Dykstra et al. 2021a). This suggests that orni-
thophagous raptors may track the shifting hatching dates of
their avian prey, which themselves may be tracking insect
hatching, promoting a better match of peak food availability
to nestlings’ energy requirements (Bretagnolle and Ter-
raube 2019). However, one study revealed advancement of
three trophic levels (oak trees, caterpillars, and passerines)
but a lack of response by the secondary consumer (Eurasian
Sparrowhawk [Accipiter nisus]), which specializes on juvenile
songbird species that hatch sequentially, providing an
extended period of available prey (Both et al. 2009). Overall,
it is unclear how diet influences a raptor’s ability to adapt to
climate change. A recent review concluded that generalist
predators were no more buffered from the effects of climate
change than were specialists (Bretagnolle and Terraube
2019), but more research is needed.

Raptors nesting at high latitudes, where effects of global
climate change are more significant (Bekryaev et al. 2010),
more often exhibit advanced phenology, compared to
raptors in more temperate regions. Peregrine Falcons
nesting in the Arctic advanced their phenology (Carrière
and Matthews 2013) whereas those in Spain did not

(Zuberogoitia et al. 2018). Mammal-specialist buteos
breeding at high latitudes also shifted their breeding dates
(Lehikoinen et al. 2009, Terraube et al. 2014). The
advancing breeding dates of high-latitude raptors are likely
driven by the shorter window of breeding opportunity
compared to their temperate counterparts, or possibly
intra-species competition; hence, high-latitude species have
a greater incentive (and less room for error) to track
advancing temperature to ensure breeding success.

Among a variety of avian species, advancing egg-laying
dates are associated with larger clutch sizes (Dunn and
Møller 2014) and greater reproductive success (McLean et
al. 2016, Dunn 2019). However, evidence is limited for
raptors, and the relationship between advancing phenology
and reproduction apparently varies among species and
locations. In several species, no trends in reproductive rates
were documented despite advanced phenology (Sergio
2003, Lehikoinen et al. 2009, Steenhof and Peterson 2009,
Rosenfield et al. 2017, Taylor et al. 2021). However,
advanced phenology was linked to larger clutch sizes in
Montagu’s Harriers (Circus pygargus; Moreno-Rueda et al.
2019), but decreased reproductive success in Rough-legged
Hawks (Buteo lagopus; Terraube et al. 2014). Among
American Kestrels (Falco sparverius) nesting in the western
USA, breeding dates advanced and early nesters experi-
enced both greater reproductive success and higher adult
survival. Conversely, in an eastern population, breeding
dates showed no trend and early nesters had greater
reproductive success but lower adult survival, suggesting
that a trade-off between reproduction and survival may
limit eastern kestrels’ ability to adjust their breeding dates
(Callery et al. 2022a). Thus, the influence of phenology
change on reproduction is apparently variable or limited
for raptors, though data are sparse.

Migration. The long-term, standardized study of raptor
migration has provided valuable databases to investigate
migration phenology and raptor abundance (Sullivan et al.
2016, Therrien et al. 2017). Overall, raptors have delayed
their autumn migration (Therrien et al. 2017) and
simultaneously advanced their spring migration (Sullivan
et al. 2016); however, parsing the data by migration strategy
reveals important differences between short-distance and
long-distance (trans-equatorial) migrants. In eastern North
America, short-distance migrants delayed their autumn
departure, whereas long-distance migrants did not (Ther-
rien et al. 2017); yet long-distance migrants in the same
study areas advanced their spring migration the most
(Sullivan et al. 2016). Similarly, European short-distance
migrants both delayed their autumn migration and
advanced their spring migration with warmer climate
conditions (Jaffré et al. 2013). At one watch site in the
Pyrenees in France, some short-distance migrants delayed,
but most long-distance migrants advanced their autumn
migration dates (Filippi-Codaccioni et al. 2010). Delayed
autumn migration is the likely cause of delayed arrival to
the wintering grounds (Harris et al. 2013), but this is
understudied.
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Migratory short-stopping (i.e., making a shorter autumn
migration, resulting in a wintering range nearer to the
breeding range) has been documented for many raptor
species (Goodrich et al. 2012, Heath et al. 2012, Martı́n et
al. 2014, 2019, Morrison and Baird 2016, Condro et al.
2022). Some partial migrants are less likely to migrate than
they were in past decades (e.g., Common Kestrel [Falco
tinnunculus], Holte et al. 2016; Eurasian Buzzard [Buteo
buteo], Holte et al. 2017; Red-tailed Hawk [Buteo jamai-
censis], Paprocki et al. 2017). Further, short-distance
migrants appear more predisposed to shift their range
compared to long-distance migrants (Hovick et al. 2016,
McCaslin and Heath 2020), potentially driven by a greater
ability to respond to supplemental cues, which could
encourage resident behavior in partially migratory popula-
tions (Paprocki et al. 2017).

Migratory behavior is influenced by environmental
conditions, and changes in raptor migration vary according
to the extent of environmental change and the migration
strategy of the species. Arctic-nesting raptors progressively
follow snowmelt as they migrate north in spring, though
the degree of their responsiveness to snowmelt differs
(Curk et al. 2020). Movements of Rough-legged Hawks
were closely associated with snowmelt across the landscape
and this species tended to be at places where snow cover
was moderate and melting was at its peak (Curk et al. 2020).
Snowy Owls (Bubo scandiacus) migrated just ahead of the
north-moving progression of snowmelt whereas Peregrine
Falcons migrated just behind it (Curk et al. 2020). Snow
cover delays spring arrival dates of American Kestrels
throughout their range (Powers et al. 2021) and decreases
the availability of small mammals (Naughton 2012); both
snowmelt patterns and prey availability may be expected to
change with global climate change. Species with flexible or
irruptive migration strategies such as the Snowy Owl and
Rough-legged Hawk will likely adjust more easily to
changing conditions than those with more regular migra-
tion such as the Peregrine Falcon (Curk et al. 2020). For
species with variable migration strategies, short-distance
migrants are more likely to adjust to temperature variation
than are long-distance migrants (Powers et al. 2021).

Changes in wind patterns and atmospheric conditions
attributable to global climate change can potentially
reduce the suitability of traditional migration routes
(Nourani and Yamaguchi 2017, Nourani et al. 2017),
resulting in changing migratory behaviors. Soaring raptors
are particularly sensitive to conditions that influence
thermals (Duerr et al 2015); for example, diminished
thermal updrafts or increased precipitation can compel
Turkey Vultures (Cathartes aura) to make stopovers and
keep them from resuming migration (Mallon et al. 2021).

Extreme weather events also influence migratory behav-
ior. An increase in the number of hurricanes and large
storms might be expected to influence raptor migration
strategies and success, though this is understudied. For
example, global weather conditions (as indexed by the
North Atlantic Oscillation [NAO]) during autumnal

migration were correlated with survival of Arctic-breeding
Peregrine Falcons; positive NAOs, which indicated condi-
tions likely to spawn hurricanes, were associated with
greater survival. Researchers attributed this unexpected
result to the stronger Northeast Trade Winds associated
with positive NAOs, which may have made it easier for the
falcons to cross the Gulf of Mexico on their southward
journey (Franke et al. 2011).

Populations. Abundance. Raptors, like other birds,
exhibit changes in abundance and/or density as a
consequence of gradual environmental change (shifts in
precipitation regime, rising temperatures) or extreme
weather events (major hurricanes, severe drought)
associated with climate change. Both modeling and
empirical studies demonstrate variable responses of
raptor abundance to climate change, with endangered,
endemic, and range-restricted species being the most
vulnerable to such changes.

Abundance models for endangered raptor species
suggest climate change may cause important population
declines. Niche modeling for the endangered Sokoke
Scops-Owl (Otus ireneae) predicts decreasing abundance of
owls and their range area (Monadjem et al. 2013) with
higher CO2 emissions. Similarly, simulated precipitation
changes (i.e., decreased mean annual precipitation and
increased interannual variation) predict dramatic reduc-
tions of Tawny Eagle (Aquila rapax) populations in African
savannas (Wichmann et al. 2003). Empirical studies
demonstrate that extreme weather events mostly affect
bird populations indirectly via habitat destruction (Wun-
derle et al. 1992). Raptor populations show variable
responses to extreme weather events, although most
decline in abundance. Declines were observed in 25% of
raptor populations after a major hurricane (Wauer and
Wunderle 1992), and the abundance of specific species
(Ferruginous Pygmy-Owl [Glaucidium brasilianum], Grena-
da Hook-billed Kite [Chondrohierax uncinatus mirus])
declined significantly after hurricane disturbance (Lynch
1991, Thorstrom and McQueen 2008). In contrast,
numbers of open-area raptors (American Kestrel, Roadside
Hawk [Rupornis magnirostris]) remained unchanged after
hurricane disturbance (Lynch 1991, Wauer and Wunderle
1992), as did the mean number of territorial pairs of
Mediterranean raptors after storms with heavy snowfall,
extremely low temperatures, and winds with steady speeds
.100 km/hr (Martı́nez et al. 2013). Raptors’ abundance
can decrease or increase in response to climate change, but
more research is needed to elucidate patterns of response
among different raptor species or groups (tropical,
temperate, specialist, generalist).

Changes in abundance of raptors among habitat types
following extreme weather events suggest between-habitat
movement after disturbance. The abundance of Turkey
Vultures and Black Vultures (Coragyps atratus) increased
with greater cover of wetlands in areas affected by a major
hurricane (Martı́nez-Ruiz et al. 2021). Moreover, vulture
abundance was higher in the first months following
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hurricane landfall; such responses were likely explained by
the rapid resource pulse in habitats like wetlands
(Martı́nez-Ruiz et al. 2021), which can ameliorate the
effects of disturbance for some species. Unfortunately, few
studies have examined effects of other extreme events (e.g.,
floods) on raptors, which may impact raptor species
differently (Hruska 2016).

Population dynamics. Climate change influences raptor
population dynamics directly through precipitation or
temperature reducing raptor productivity and survival, or
indirectly through altered prey population dynamics
(including changing herbivore cycles [Ims et al. 2008,
Kausrud et al. 2008, Cornulier et al. 2013]). Mechanisms
can include destabilizing pressures that affect population
fluctuations, alter wavelengths, or halt cycles entirely. Gilg
et al. (2009) and Schmidt et al. (2012) found a climate-
change-induced collapse in collared lemming (Dicrostonyx
groenlandicus) cycles caused a concurrent collapse of Snowy
Owl population cycles. This led to a 98% reduction in owl
productivity and local extirpations. Similarly, climate-
change-induced dampening of vole cycles substantially
reduced the breeding probability of Tawny Owls (Strix
aluco) and may drive the local population in the United
Kingdom to extirpation (Millon et al. 2014). Though
direct effects of weather on mortality rates may be easier to
document, effects of altered predator-prey dynamics are
typically considered more consequential (Millon et al.
2014, Ockendon et al. 2014, Terraube et al. 2014).

Extreme weather events and changing weather patterns
can dramatically alter population dynamics of raptors (and
their prey). In Greenland, an extreme weather event (high
snowfall and late snowmelt) led to an ecosystem-wide
reproductive collapse in an area previously characterized by
decades of regular lemming-based predator-prey popula-
tion cycles (Schmidt et al. 2018). Precipitation events
negatively impacted productivity of Arctic Peregrine
Falcons in Canada (Anctil et al. 2014, Robinson et al.
2017, Lamarre et al. 2018) and Arctic-nesting Rough-legged
Hawks (Pokrovsky et al. 2012). Similar effects, including
reduced adult survival, have also been documented at more
temperate locations (McDonald et al. 2004, Fisher et al.
2015). Sarasola et al. (2005) reported direct mortality of
individuals of six raptor species, as well as 14 other raptors
with severe injuries, after a single hailstorm in central
Argentina. Following major hurricanes, the endangered
Puerto Rican Sharp-shinned Hawk (Accipiter striatus venator)
population decreased from 75 to 19 individuals (75%
decrease) according to post-hurricane counts (McClure et
al. 2023). At lower latitudes, extreme heat events also cause
direct mortality; Catry et al. (2011) found nestling mortality
increased substantially during anomalous heat events and
predicted that climate-change-induced extreme heat could
reduce the Lesser Kestrel (Falco naumanni) population size
by as much as 7% annually. Mass mortality associated with
extreme weather events may have direct consequences on
the local abundance of raptors (Sarasola et al. 2005), and
direct mortality can have broader negative effects for

endangered populations (e.g., Puerto Rican Sharp-shinned
Hawk). Reduced precipitation in arid regions can nega-
tively impact raptor population dynamics by reducing the
probability of population persistence (Wichmann et al.
2003). Higher precipitation levels or changing average
temperatures during the breeding season (as predicted in
current and future climate scenarios) have been correlated
with lower raptor productivity (Mearns and Newton 1988,
Bradley et al. 1997, Lehikoinen et al. 2009), with the
potential to influence raptors’ demographics over longer
periods of time.

Raptor Communities. There is scarce information on
raptor-community responses to climate change, but avail-
able evidence shows species-specific reductions leading to
community changes, reductions in community parameters,
and among-habitat movements reflecting shifting precipi-
tation regimes and extreme weather events. Raptor density
was significantly lower in tropical dry forests impacted by a
major hurricane compared to unaffected nearby forests
(Martı́nez-Ruiz and Renton 2018). Concurrently, species
richness and evenness were significantly higher in wetlands
located within the area of maximum hurricane winds,
suggesting raptor species’ movement among habitats and
use of wetlands as refugia after hurricane disturbance
(Martı́nez-Ruiz and Renton 2018). The occupancy proba-
bility for Accipitridae and Falconidae declined significantly
more than that of other bird families in response to a long-
term reduction in precipitation attributable to climate
change in the Mojave Desert (Iknayan and Beissinger
2018); individual raptor species (American Kestrel, Prairie
Falcon [Falco mexicanus], Turkey Vulture, Sharp-shinned
Hawk [Accipiter striatus]) showed significant declines in
occupancy, causing decreases in species richness of the
overall bird community (Iknayan and Beissinger 2018).
Similarly, species richness of avian scavengers and occa-
sional scavengers (including Bald Eagle [Haliaeetus leucoce-
phalus], Barred Owl [Strix varia], Black Vulture, Cooper’s
Hawk [Accipiter cooperii], Golden Eagle [Aquila chrysaetos],
Great Horned Owl [Bubo virginianus], Red-shouldered
Hawk [Buteo lineatus], Red-tailed Hawk, Rough-legged
Hawk, and Turkey Vulture) is predicted to decrease up to
80% over the next 50 yr, as a response to the predicted
warmer climate for the eastern USA (Marneweck et al.
2021).

Shifts in the rainfall regime can influence raptor
communities via shifts in prey abundance occurring after
heavy rainfall in arid systems. In Australia, raptor richness
increased after extreme rainfall events and an associated
rodent-irruption, with increases mainly driven by increases
in generalist raptors (Pavey and Nano 2013). Variation in
system productivity of arid systems as a result of climate
change may strongly influence raptors, as raptor richness
increases with productivity of land, but decreases with the
proportion of deserts in arid-system assemblages (Anadón
et al. 2010). Other raptor communities may respond
differently to changes in primary productivity, and effects
may be influenced by community composition.
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Although evidence of raptor community responses to
climate change is still limited, we can expect increases in
species richness, indirectly favored by resource pulses and
prey irruption associated with some extreme events (e.g.,
higher precipitation), as well as reductions in species
richness in arid systems warming because of climate
change. The magnitude of effects of climate change in
raptor communities across the globe will also depend on
the available pool of regional species, a concern in some
areas where raptor communities have been described as
depauperate.

Morphology, Physiology, and Behavior. Changing con-
ditions can promote rapid change in morphological and
physiological traits via phenotypic plasticity or microevolu-
tionary processes (Millien et al. 2006, Karell et al. 2011, del
Mar Delgado et al. 2019). Phenotypic plasticity more
commonly facilitates a response to climate change,
although distinguishing between plasticity and microevo-
lution is difficult and understudied (Teplitsky and Char-
mantier 2019).

Generally decreasing body sizes have been documented
across multiple avian taxa (Yom-Tov and Yom-Tov 2006,
Van Buskirk et al. 2010, Gardner et al. 2014, Tornberg et al.
2014 McKechnie 2019) but causes have not been con-
firmed. Decreasing body size has been proposed as a third
‘‘universal’’ response to climate change (together with
distributional and phenological shifts; Gardner et al. 2011),
although recent reviews show more inconsistent trends
(Teplitsky and Millien 2014, Fiedler 2021). Migrating
American Kestrels declined in size and mass at most but
not all of seven North American sites, concurrent with
declining abundance of migrating kestrels; thus, the
smaller size may be attributable to lower food availability,
climate change, or other factors (Ely et al. 2018). An inverse
relationship between body size and temperature aligns with
Bergmann’s rule, though the specific mechanisms promot-
ing this rule are debated (Gardner et al. 2014, Brammer
and Humphries 2015).

For polymorphic species, climate change can influence
the proportion of the color morphs in a population
through selective pressure on this highly heritable trait.
For example, survival of brown morph Tawny Owls in
Finland is inversely related to snow depth, but as mean
snow depth declined over time as a consequence of climate
change, selection pressure eased and survival improved. As
a result, brown morphs composed an increasing propor-
tion of the population over the study period (Karell et al.
2011).

Physiological and behavioral mechanisms for coping
with heat are relatively plastic; thus, large impacts of climate
change may be expected where species are already near
their physiological limits, such as in deserts with high
environmental temperatures and limited water supply
(Iknayan and Beissinger 2018, McKechnie 2019). Acute
consequences — hyperthermia and dehydration — can
occur quickly, especially in small species (McKechnie
2019). Heat and drought can also generate longer-term

consequences including chronic mass loss, which can be
attributed to heat-dissipating behaviors (e.g., panting; du
Plessis et al. 2012) or indirect effects on the prey base
(Cruz-McDonnell and Wolf 2016). Temperature extremes
can reduce nestling growth and survival rates (Cunning-
ham et al. 2013, Cruz-McDonnell and Wolf 2016, McKech-
nie 2019), which may have carryover effects on population
dynamics. For example, body mass declines of adult and
nestling Burrowing Owls (Athene cunicularia), along with
delayed breeding, reduced reproductive rate, and declin-
ing population, were linked to drought conditions in arid
New Mexico (Cruz-McDonnell and Wolf 2016). Raptors
may be more vulnerable to climate change than smaller
bird species in the Mojave Desert, though their declines
were more likely related to lower prey availability than to
direct physiological constraints (Iknayan and Beissinger
2018).

Raptor behavior may also change in response to the
pressures of global climate change. For example, late-
nesting kestrel males begin incubation sooner after nest
initiation, which advances the hatch date of the first eggs,
reducing the amount of phenological mismatch. The
resulting increased asynchrony of the brood also helps
reduce peak energetic demands (Callery et al. 2022b).
Overall, the effects of global climate change on raptor
morphology, physiology and behavior have received
limited study and warrant further attention.

RESEARCH NEEDS AND FUTURE DIRECTIONS

Raptors have been and will continue to be affected by
the environmental pressures of climate change, resulting in
changes in their phenologies and dynamics. Given the
predicted acceleration of climate change (IPCC 2021),
some raptor species will become more vulnerable to the
higher variation in climate conditions and more extreme
weather patterns.

Identifying populations or species most likely to be
severely affected by climate change is critically important,
as is designing actions that can maintain and increase
resilience of these species. High-altitude raptors and
those in hot arid zones are likely at greater risk because of
the severity and rate of local climate change. Species with
low population sizes or inherent limiting factors (e.g.,
island species, dietary specialists), and those facing
anthropogenic threats (e.g., habitat loss, persecution)
might also be particularly vulnerable to the compounding
effects of environmental pressures. It is probable that the
effects of climate change on many raptors are still
unknown because of a lack of basic biological and
ecological information on some species, including trop-
ical raptors. We must continue assessing which species are
at higher risk and how high priority species will respond
spatially to climate change to adequately inform conser-
vation actions and management of vulnerable species
(Moritz and Agudo 2013).
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Predicting future distributional shifts is useful for
species conservation, as is monitoring populations’ shifting
distributions and/or changing phenologies. As with other
birds, this information should be used for designing
effective conservation strategies, identifying potential
conflicts with human developments (Marini et al. 2009),
and identifying priority areas for protection that preserve
biodiversity under predicted distributional changes (Virk-
kala et al. 2014). Importantly, recent shifts in migration
behavior, phenology of migration, flight paths, and
weather patterns might affect detectability and timing of
raptors passing migration-monitoring sites, and we need to
be able to incorporate such changes within the framework
of migration monitoring. We recommend sharing data on
this topic among researchers (e.g., via repositories) and
taking the time to curate long term data; these actions will
promote a better understanding of raptor responses to
global climate change and support the development of a
well-founded framework of potential actions to conserve
raptors worldwide.

Novel interactions as a result of distributional changes may
have greater implications for specialist raptors interacting
with a new assemblage of species, pathogens, or anthropo-
genic threats, or intra-guild competitors with similar niches
(Oliver and Morecroft 2014). It is important to consider such
interactions involving raptors in both their breeding and
nonbreeding ranges, if these differ. Monitoring projects that
involve trapping raptors should incorporate the collection of
samples for examination of pathogens and disease to better
track such threats for raptor species and populations. There is
also an urgent need for better models incorporating climate
change into predictive models of population dynamics
(Sæther et al. 2019) and ecological niche models (Zurell
and Engler 2019) for raptors. Additionally, all species-specific
and community-level studies should be prioritized to
elucidate causal mechanisms that influence raptors under
the climate change scenario.

Existing long-term breeding phenology datasets should
be analyzed to assess trends across a wider variety of raptors.
A raptor-specific meta-analysis would give insight into
patterns and a better understanding of which species and
populations are most vulnerable. Such an analysis could
also improve predictions of how trends in breeding
phenology influence reproduction and other population
parameters. Because long-term datasets often rely on older
data derived from ‘‘low-tech’’ methods (e.g., banding/
ringing, citizen-science breeding season and nonbreeding
season counting, migration counts), these efforts should be
continued to maintain the continuity and usefulness of the
data into the future (Ambrosini et al. 2019). However, these
need to be combined with more modern research methods.

Studies on the effects of single extreme weather events
on raptors are still scarce, but the available evidence of
direct mortality and significant population reduction of
endangered raptors indicates that more attention should
be directed to this topic. In addition, there is little
information on the effects of other extreme weather events

such as severe wildfires (e.g., Australia’s wildfire season of
2020), which cause mortality of different animals, but
evidence is still scarce for raptors.

As more extreme weather events are expected with climate
change, it is important to evaluate how different raptor
species (and populations and communities) cope with such
events, and to identify species-specific traits (diet, size, nest
type, phenology) that are associated with species’ resilience.
Additionally, identifying the most vulnerable populations
located at sites that are expected to be severely affected by
extreme weather events will help prioritize management
efforts (restoring of vegetation, refugia [Sumasgutner et al.
2020]) to mitigate the direct impacts of weather.

Some effects of climate change may be partially
mitigated by conservation efforts that provide critical
resources for raptors. Provision of nest boxes for some
species such as Peregrine Falcons can buffer the negative
effects of weather variables including extreme weather
events (Sumasgutner et al. 2020). Similarly, provision of
artificial water sources in desert zones may help species
minimize dehydration risk exacerbated by higher temper-
atures, though care should be taken in the siting of such
resources, and it is unclear how they might affect predation
risk for species visiting them (McKechnie et al. 2019).
Overall, monitoring, assessing data, and mitigation actions
may not be enough for the maintenance of raptor
populations; these actions must be accompanied by global
actions to reduce climate change.

As a leading professional society for raptor researchers
and raptor conservationists, the RRF is dedicated to the
accumulation and dissemination of scientific information
about raptors, and to resolving raptor conservation
concerns (RRF 2021). Effects of climate change on raptors
are of conservation concern, presenting a global threat to
raptor populations. Based on the science summarized here,
we conclude that a world-wide reduction in carbon
emissions is necessary to allow long-term co-existence of
raptors with human populations, but that some conserva-
tion efforts can help mitigate the effects of climate change
on raptors.
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increases nestling mortality of an arctic top predator:
Experimental evidence and long-term trend in Pere-
grine Falcons. Oecologia 174:1033–1043.

Atkinson, C. T., and D. A. Lapointe (2009). Introduced
avian diseases, climate change, and the future of
Hawaiian honeycreepers. Journal of Avian Medicine
and Surgery 23:53–63.

Bekryaev, R. V., I. V. Polyakov, and V. A. Alexeev (2010).
Role of polar amplification in long-term surface air
temperature variations and modern arctic warming.
Journal of Climate 23:3888–3906.

Boonman, C. C. F., M. A. J. Huijbregts, A. Benı́tez-López,
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Beardsell, L. J. Goodrich, J. Bêty, A. Franke, E. Zlonis,
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