Editorial Type:
Article Category: Research Article
 | 
Online Publication Date: 19 May 2020

Variation in Electrocution Rate and Demographic Composition of Saker Falcons Electrocuted at Power Lines in Mongolia

,
,
,
,
,
,
,
,
,
, and
Page Range: 136 – 146
DOI: 10.3356/0892-1016-54.2.136
Save
Download PDF

Abstract

We examined variation in the number and demographic composition of electrocuted Saker Falcons (Falco cherrug) in Mongolia. We found 1721 electrocuted Saker Falcons during our surveys of multiple power lines in 2013–2015 and 2018. At a single power line surveyed over a 16-mo period in 2013–2014, the lowest electrocution rates occurred from December to March, with a rise in April coinciding with the return of migrant juveniles from their wintering areas. Electrocution rates rose sharply during juvenile post-fledging dispersal, and then declined in October as migrants departed. Monthly changes in electrocution rate and age profile reflected predicted variation in abundance and age structure of the local Saker Falcon population. We found that 88% of electrocuted Saker Falcons were juveniles, mostly killed during their first calendar year. The sex ratio of electrocuted juveniles fledged in the 2013 cohort (hatch-year birds) was significantly female-biased, in contrast to the equal sex ratio of the 2012 juvenile cohort (second calendar-year birds) killed in the same year (2013). Sex ratio of the 2013 juvenile cohort did not differ significantly from parity at other power lines across Mongolia, indicating that sex ratio of electrocuted juveniles can vary in time and space. The sex of electrocuted adults, predominantly males, and an age profile of breeding Saker Falcons that includes younger females suggests a possible male-biased sex ratio among adult Saker Falcons in Mongolia. Given that large numbers of endangered Saker Falcons are electrocuted annually in Mongolia, our study suggests electrocution may be an important driver of demographic trends that can potentially result in population declines.

Resumen

Examinamos la variación en el número y la composición demográfica de Falco cherrug electrocutados en Mongolia. Encontramos 1721 individuos electrocutados durante nuestros muestreos de múltiples líneas eléctricas en el periodo 2013–2015 y en 2018. En una única línea eléctrica muestreada a lo largo de un período de 16 meses en los años 2013 y 2014, las tasas de electrocución más bajas fueron registradas desde diciembre a marzo, con un aumento en abril, coincidente con el regreso de los migrantes juveniles desde sus áreas de invernada. Las tasas de electrocución aumentaron marcadamente durante la dispersión juvenil una vez abandonado el nido, y luego disminuyeron en octubre a medida que los ejemplares iniciaron la migración. Los cambios mensuales en la tasa de electrocución y en el perfil de edades reflejaron la variación predicha en la abundancia y estructura de edades de la población local de F. cherrug. Encontramos que el 88% de los individuos electrocutados eran juveniles, que murieron durante su primer año calendario. La proporción de sexos de juveniles electrocutados pertenecientes a la cohorte de 2013 (aves de primer año-calendario) estuvo significativamente sesgada hacia las hembras, en contraste con la paridad en la proporción de sexos de la cohorte de juveniles de 2012 (aves de segundo año-calendario) muertos en el mismo año (2013). La proporción de sexos en la cohorte de juveniles del 2013 no varió significativamente de la paridad en otras líneas eléctricas de Mongolia, indicando que la proporción de sexos de los juveniles electrocutados puede variar en el tiempo y el espacio. La electrocución predominantemente de machos adultos y un perfil de edades de los individuos reproductores de F. cherrug que incluye hembras jóvenes, sugiere un posible sesgo hacia los machos entre los adultos de F. cherrug en Mongolia. Considerando el alto número de individuos que se electrocutan anualmente en Mongolia, nuestro estudio sugiere que la electrocución puede ser un importante impulsor de las tendencias demográficas que potencialmente pueden dar lugar a la disminución de la población de esta especie amenazada.

[Traducción del equipo editorial]

Copyright: © 2020 The Raptor Research Foundation, Inc. 2020
Figure 1.
Figure 1.

Typical configuration of line pole (left) and anchor pole (right) at 15-kV electricity distribution lines in Mongolia. Perch deflector brushes are deployed on the crossarm of line pole, with electrocuted Saker Falcon at the middle phase. The anchor pole illustrates the configuration in which jumper wires at the middle phase pass over the crossarm and those at the outer phases pass underneath; Saker Falcon perched at crossarm.


Figure 2.
Figure 2.

Mean daily electrocution rate of Saker Falcons in each month from two separate datasets obtained on the same power line. Unmanipulated poles maintained a constant configuration from April 2013 to July 2014, and the mitigated poles maintained a constant configuration during September 2013 to July 2014.


Figure 3.
Figure 3.

Number and sex of Saker Falcons electrocuted in each month over the period April 2013–July 2014 relative to age. Top: 1cy = 1st calendar-year juveniles, center: 2cy = 2nd calendar year juveniles, bottom: adults (note that birds classified as adults electrocuted August–October inclusive may include 2cy birds that had completed their post-juvenile molt). Main periods of annual cycle are given for each age class.


Figure 4.
Figure 4.

Wing chord (mm) for Saker Falcons of known sex and age. Sex determined by dissection and examination of gonads. 1cy = 1st calendar-year juveniles (n = 103), 2cy = 2nd calendar-year juveniles (prior to post-juvenile molt completion; n = 80) and Ad = 2nd calendar-year birds (after completion of post-juvenile molt) and older (n = 23).


Figure 5.
Figure 5.

Dispersal distance for electrocuted juvenile Saker Falcons in July, August, and September (minimum, first quartile, median, third quartile, and maximum).


Contributor Notes

1 Current address: Reneco International Wildlife Consultants, PO Box 61741, Sky Tower, Al Reem Island, Abu Dhabi, UAE; email address: adixon@reneco.org

Associate Editor: James F. Dwyer

Received: 13 Mar 2019
Accepted: 12 Jul 2019
  • Download PDF